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ABSTRACT 
This work presents an approach for implementation of 
conditional random fields (CRF) in transferring motor 
skills to robots. As a discriminative probabilistic model, 
CRF models directly the conditional probability 
distribution over label sequences for given observation 
sequences. Hereby, CRF was employed for segmentation 
and labeling of a set of demonstrated trajectories observed 
by a tracking sensor. The key points obtained by CRF 
segmentation of the demonstrations were used for 
generating a generalized trajectory for the task 
reproduction. The approach was evaluated by simulations 
of two industrial manufacturing applications. 
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1. INTRODUCTION 
One of the ultimate goals of the artificial intelligence field 
is creation of machines and robots with a high level of 
cognitive abilities. An important step toward this goal is 
inventing effective methods for machine learning and 
independent analytical reasoning. One such framework is 
robot programming by demonstration (PbD), where a 
robot acquires new skills from observation of the skills 
demonstrated by a human, or by another robot. Based on 
the observations, the learner robot creates an abstract 
representation of the task and generates a plan for 
reproduction of the demonstrated actions.  

Probabilistic methods have been used in robot PbD 
for encoding the human motions, extracting the 
constraints of the demonstrated tasks, and for obtaining a 
generalized trajectory from a set of demonstrations. 
Hidden Markov Model (HMM) [1] has been employed for 
this purpose by a number of authors (cf. [2]–[5]). In a 
recent work, Irish et al. [5] applied HMM for both 
segmentation and temporal clustering of trajectory data 
observed from multiple demonstrations. Furthermore, 
they presented a new method based on Moving Window 
Principle Component Analysis (PCA) to extract feature 
data from the segmented trajectories that led into creation 

of the generalized robot trajectories based on the 
recognized features. Calinon et al. [6] used a Gaussian 
Mixture Model for spatio-temporal skill encoding, 
whereas generalization of the demonstrated trajectories 
was accomplished by using Gaussian Mixture Regression. 
Coates et al. [7] presented a method for PbD using 
Dynamic Bayesian Networks, based on learning the 
dynamic model of the demonstrations. Regression 
techniques were employed in [8], [9] for generalization of 
probabilistically modeled demonstrations.  

In this work we investigate implementation of a new 
method for robot learning by using Conditional Random 
Field (CRF) [10] for (conditional) modeling of the 
demonstrated trajectories, and for extraction of the most 
relevant components for task reproduction. 

CRF is a discriminative probabilistic approach for 
finding the conditional probability distribution of a 
sequence of hidden states (labels) S for a given sequence 
of observations O, i.e., ( )p S O . In essence, CRF is a 
discriminative model which is a probabilistic equivalent 
to HMM as a generative model (i.e., HMM defines the 
joint probability distribution of observed sequences and 
the hidden states sequences). Unlike HMMs which 
assume independence of the observations given the latent 
states, CRFs do not require the observations to be 
independent. This allows to involve complex features 
from the entire sequence of observations in calculating the 
probabilities of the hidden state variables.  

One of application domains where CRFs have been 
most extensively used is the language processing. 
Examples include part-of-speech tagging [10], [11], 
shallow parsing [12], named-entity recognition [13], [14]. 
CRFs were reported to outperform HMMs for 
classifications tasks in these studies. Other areas of 
implementation include image segmentation [15], [16], 
gene prediction [17], activity recognition [18], [19], 
generation of objects’ trajectories from video sequences 
[20], etc.  

In the robot PbD environment, Kjellstrom et al. [21] 
presented an approach for grasp recognition from images 
using CRF. Martinez and Kragic [22] employed Support 
Vector Machines for activity recognition in robot PbD by 
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modeling the demonstrated tasks at a symbolic level, 
followed by using CRF for temporal classification of each 
sub-task into one of the several predefined action 
primitives classes. The comparison results of recognition 
rates between HMM and CRF indicated similar 
performance of both methods for short actions, and higher 
recognition rates by CRF for the case of prolonged 
continuous actions. 

To the best of authors' knowledge, CRF has not been 
implemented before for acquisition of skills at the 
trajectory level in the area of robot PbD. The proposed 
method builds upon our previous work [23], which 
employed HMM for learning skills at a trajectory level in 
robot PbD. Both works are based on extracting the 
trajectories’ key points, which refer to the relevant 
features for reproduction from the set of demonstrated 
trajectories [3], [24], [25]. This study employs CRF for 
identifying the sequence of hidden states for each 
demonstrated trajectory, based on the evidence from 
observed demonstrations. A cross-validation was 
employed, by training on the entire demonstrated set with 
one trajectory excluded, and performing inference on the 
remained trajectory. The trajectories key points were 
assigned at the transitions between the hidden states. 
Afterwards, the obtained key points were temporally 
shifted to a common time vector using the Dynamic Time 
Warping (DTW) [26]. A generalized trajectory was 
generated via cubic spline interpolation of the key points 
from all trajectories. The proposed approach was 
evaluated for simulated learning of industrial tasks of 
painting and peening.   

The material of this paper is organized as follows. 
Section 2 provides preliminaries about the problem at 
hand and sets the terminology. Section 3 briefly 
introduces the theoretical background behind CRFs. 
Section 4 presents the proposed approach for 
implementing CRF for trajectories learning. The 
experiments and obtained results are given in Section 5. 
Section 6 discusses certain aspects of the presented work 
and section 7 summarizes the work.  

2. PROBLEM DEFINITION 
We consider a case where a skill is transferred to a robot 
based on multiple demonstrations of the same skill under 
similar conditions. A human demonstrator has the role of 
a teacher, by providing multiple examples of the skill. For 
the considered applications, the demonstrator uses a tool 
to accomplish the task goals, while the robot learner 
observes the demonstrations and records the tool’s 
trajectories. Let denote the set of demonstrated 
trajectories with (1) (2) ( ), , ..., NO O O , each of which 
represents a sequence of measurements data 

{ }( ) ( ) ( ) ( )
1 2, ,...,

n

n n n n
To o o=O . The sequence index is denoted 

by the superscripts 1, 2, ...,n N= , and each sequence can 
have a different length nT . In a general case, each 
measurement consists of position and orientation of the 
tool ( )( )( ) , , , , , nn

t to x y z ϕ ϑ ψ=  with respect to a predefined 

reference frame, where the subscript t denotes the time 
index of the measurement. 

Based on a set of demonstrated trajectories, the goal 
is to generate a generalized trajectory to be executed by 
the robot for task reproduction. The generalization is 
based on extracting the relevant features for reproduction 
from the demonstrations. We relate these task features 
with the trajectories’ key points, which represent the 
transitions between the different types of motions of the 
demonstrations. Therefore, it is first required to infer an 
unobserved (hidden) state ( )n

ts  for each observation feature 
( )n
to  from the trajectory ( )nO  at time t. The hidden states 

are associated with certain types of performance (e.g., 
trajectory velocity or position), and the key points are 
assigned at the transitions between the hidden states. The 
efficiency of the trajectory segmentation with CRF can be 
assessed by the classification rate with regards to a set of 
initial labels for the trajectories. After the sequences of 
key points for the demonstrated trajectories are extracted, 
a generalized trajectory for task reproduction is obtained 
by applying a curve fitting technique.  

3. CONDITIONAL RANDOM FIELD 
CRF belongs to the family of undirected graphical models 
[27]. An undirected graph consists of a set of vertices (or 
nodes) connected by edges (or links) ( ),G V E= , where 
the nodes represent random variables, and the 
(undirected) edges represent the conditional dependencies 
between the variables. A subset of nodes in the graph 
which contains a link between each pair of nodes is called 
clique. The cliques in the graph with the maximum 
number of conditionally dependent variables are the 
maximal cliques. The joint probability distribution of the 
graph variables is defined as a product of potential 
functions Cψ , 

( )1( ) C C
C

p
Z

ψ= ∏x x                    (1) 

where each potential function corresponds to a maximal 
clique in the graph over a subset of variables Cx . The 
quantity Z is called normalization factor (or partition 
function), and ensures that ( )p x  in (1) represent a 
properly normalized distribution, i.e.,  

( )C C
C

Z ψ= ∑∏
x

x .                        (2) 

In addition, in order to have proper values for the 
probabilities in (1), the potential functions ( )C Cψ x  must 
be real-valued and strictly positive. Consequently, the 
potential functions are usually expressed as exponentials 
of energy functions, i.e., ( ) { }exp ( )C C CEψ =x x . As a 
result, the joint distribution (1) is represented as a sum of 
the energies of maximal cliques of the graph 

( )1( ) exp C C
C

p E
Z

 =  
 
∑x x .             (3) 
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For the applications with sequential data, the inputs 
represent ordered sequences (e.g., words in a text, labels 
of DNA sequence, trajectory measurements), and the 
corresponding structure of the graphical models is called 
linear chain (Fig. 1a shows an HMM graph as an example 
of a chain structure). A graphical model of a linear chain 
CRF is given in Fig.1b. In that case, the maximal cliques 
of the graph include the links between the pairs of 
adjacent state variables 1( , )t ts s − , and the links with the set 
of observations O. This is due to the assumption of first-
order Markov property over state variables in the CRF 
graph structure, i.e., each state is conditionally 
independent of the other states given its neighbors states. 

A linear chain CRF is defined as a conditional 
distribution ( )p S O  of a sequence of unobserved states S 
given an observations sequence O [10], [11]: 

1
1( ) exp ( , , , ) ( , , )l l t t m m t

l m
p f s s t g s t

Z
µ η−

 = + 
 
∑ ∑S O O O .  

   (4) 
The set { , }l mµ η=Λ  denotes the parameters of the 

model. The functions 1( , , , )l t tf s s t− O  correspond to 
transition feature functions of the states at times t and 1t −  
and the observation sequence O, whereas ( , , )m tg s tO  
denote state feature functions of the observation sequence 
O  and the state at time t. Often the notation is simplified 
by generalizing the notation of the above two feature 
functions into 1( , , , )k t ts s tφ − O . With this notation, kφ  can 
represents either a transition feature function or a state 
feature function, and the model (4) is written in the form 

( )1
1( ) exp , , ,k k t t

k
p s s t

Z
λ φ −

 
=  

 
∑S O O .    (5) 

As noted earlier, the normalization function Z is 
obtained by summing over all possible configurations on 
S, and enforces that the cumulative probabilities sum to 
one: 

1exp ( , , , )k k t t
k

Z s s tλ φ −
 

=  
 

∑ ∑
S

O .       (6) 

The choice of feature functions will be discussed in 
Section 4. In the remaining of this section, we briefly 
address the problems of training and inference in CRFs. 

For a given independent and identically distributed 
training set { }( ) ( )

1
,

Nn n

n=
O S  consisting of N observation 

sequences and the corresponding labelled sequences, the 
parameters of the model Λ  are estimated by maximizing 
the conditional log-likelihood of the observations for the 
given labels  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
1

1 1 1
( ) log , , , log .

N N K
n n n n n n

k k t t
n n k

p s s t Zλ φ −
= = =

 = = −  
∑ ∑ ∑Λ S O O O

 
       

(7) 
A noticeable property of the function ( )Λ in (7) is 

that it represents a logarithm of sum of exponential 
components, and as a consequence it is concave. This 
property significantly facilitates the optimization problem 
and guarantees that any found local maximum is a global 
maximum. 

Partial derivatives of the log-likelihood (7) with 
respect to parameters Λ  are as follows 

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

1 1
, , , , , , , , .

N N
n n n n n n n n n

k t t k t t t t
n nk

s s t s s t p s s tφ φ
λ − − −

= =

∂
= −

∂ ∑ ∑∑
S

O O O

 

  (8) 
Setting the partial derivatives in (8) to zero results in 

maximum entropy solution, i.e., the expectations of each 
feature function kφ  with respect to the empirical 
distribution of the training data and the expectations of 
the feature functions with respect to the model 
distribution are equalized. 

Once the log-likelihood function (7) and its 
derivative (8) are obtained, estimation of the model 
parameters is solved by numerical optimization methods. 
Often quasy-Newton methods with approximation of the 
Hessian matrix are employed, such as limited-memory 
BFGS or conjugate gradient approach [11]. Overfitting of 
the model parameters can be avoided by regularization of 
the optimization function (7). In that case, the log-
likelihood is penalized by adding an additional term 
proportional to the Euclidean (l2) norm of the parameters 
vector 2

kλ∑ , or by adding an additional term proporti-
onal to the l1 norm of the parameters kλ∑  [28].  

Inference in linear chain CRFs is associated with 
solving two problems. The first one is finding the most 
likely sequence of states 'S  for a given sequence of 
observations 'O  and known model parameters. In 
addition, computation of the gradient (8) for parameters 
estimation during the training requires finding the 
pairwise marginal probabilities of the states 

s1 s2 s3 sTn sTn-1 

o1                 o2                o3                        oTn-1                oTn 
 
   

a) 

O={o1, o2, o3, … , oTn-1, oTn} 
 
   

s1 s2 s3 sTn sTn-1 

b) 
Fig. 1 Graphical models of: a) HMM, b) linear chain CRF. The 
shaded nodes depict the sequence of observed elements 

{ }1 2, ,...,
nTo o o=O , and the white nodes depict the hidden 

                    states sequence { }1 2, ,...,
nTs s s=S . 
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( )1, ,t tp s s t− O . These two problems are efficiently 
solved with the Viterbi and forward-backward algorithm, 
respectively [11].  

4. CRF FOR TRAJECTORY GENERALIZATION 
Observed data in this work are the continuous trajectories 
captured during the demonstration phase. In general, 
observed features of CRFs can be either continuous or 
discrete in nature, whereas only discrete state variables 
are considered. First, we discuss formation of the feature 
functions, for both continuous and discrete observations. 

Vail et al. [19] presented a CRF model for 
classification of activities based on observed continuous 
trajectories. The authors introduced the following 
continuous state feature functions  

 ( ), ( , , ) ( )i u t t tg s t I s i o u= =O  ,                (9) 

for { }1, si N∈  (where Ns denotes the number of hidden 
states), and u denotes the dimensionality of the 
trajectories to . The notation ( )tI s i=  pertains to a binary 
indicator function, which equals to 1 when the state at 
time t is i, and 0 otherwise. To enhance the classification 
rate of the model, other continuous state feature functions 
were added to the model, such as velocities, squared 
positions, etc. The transition feature functions encode the 
transition scores from the state i at time 1t −  to state j at 
time t, i.e., 

 ( ) ( ), 1 1( , , , )i j t t t tf s s t I s i I s j− −= = =O ,      (10) 

for { }, 1, si j N∈ .  
An important point reported in [19] was that the 

empirical sum of the features in (7) can be badly scaled 
when continuous features functions are used. This can 
cause slow convergence of the optimization algorithms, or 
in the worst case, the algorithm would not converge. As a 
remedy, the authors normalized the continuous 
observations to sequences with zero mean and variance 
one [19].   

Most of CRF’s applications in the literature deal with 
categorical input features (e.g., labeling words in a text), 
rather than continuous measurements. In that case, the 
observed features are mapped to a set of discrete symbols

{ }( )
1

Rn
t r ro v

=
∈ . The state feature functions are defined as 

binary indicators functions for each state-observation 
pairs 

( ) ( ), ( , , )i r t t t rg s t I s i I o v= = =O ,                (11) 

for { }1, si N∈ , and { }1,r R∈ . 
The transition feature functions are defined in an 

identical manner as in (10). The structure of CRFs allows 
additional observed features to be easily added to the 
model by generalizing the feature functions. For instance, 
the dependence of state transitions to the observed symbol 
can be modeled by adding additional feature functions 
( ) ( ) ( )1t t t rI s i I s j I o v−= = = . 

Implementation of CRF in our work is based on 
discrete observation features, due to the scalability 
problems with the continuous features. For that purpose, 
the continuous trajectories were mapped to a discrete set 
of symbols by using the Linde-Buzo-Gray (LBG) 
algorithm [29]. The LBG quantization procedure is 
basically a variant of the k-means clustering technique 
[2], and it consists in grouping the input data into a pre-
specified number of clusters. In our case, the 
preprocessing first involved normalization of each 
observation feature (e.g., x-position coordinates of the raw 
measurement data) to a sequence with zero mean and 
unity variance (similarly to the approach in [19]). 
Afterwards, the normalized data from the entire set of 
demonstrations (i.e., { ( )n

tx  for ( )1, ,nt T∈ ( )}1,n N∈ ) were 
concatenated, and they were iteratively clustered with the 
LBG algorithm. After the clustering, each individual 
observation point was assigned to the closest centroid 
cluster. This procedure was repeated for all dimensions of 
the observed data, resulting in the set of discrete 
sequences (1) (2) ( ), , ..., NO O O . 

Training of the CRF model also requires providing 
the corresponding sequences of labels for each 
observation sequence. Hence, for initial labeling of the 
trajectories we employed again the technique of LBG 
clustering. This time for clustering we used a set of 
concatenated normalized positions and velocities vectors 
from all demonstrated trajectories [ ]{ ( ), , , , , n

tx y z x y z    for 

( ) ( )}1, , 1,nt T n N∈ ∈ . The clustering procedure associated 
each position-velocity vector with the closest centroid. 
The transitions between the clusters labels which occurred 
in the same temporal order in all demonstrations were 
adopted as key points. The detected initial key points 
yielded the labeled sequences (1) (2) ( )

init init init, , ... , NS S S . This 
procedure assigns automatically the trajectories’ key 
points, based on changes in position and velocity of the 
trajectories [23].  

A common challenge associated with task modeling 
in robot PbD is the limited number of demonstrations 
available for estimation of the model parameters (since it 
may be frustrating for a demonstrator to perform many 
demonstrations, and in addition, the quality of the 
performance can decrease due to fatigue or other factors). 
Therefore, to extract the maximum information from 
limited training data, as well as to avoid testing on the 
training data, we adopted the leave-one-out cross-
validation technique for training purposes. It consists of 
using a single observation sequence for validation, and 
using the remaining observation sequences for training. 
For instance, to label the observed sequence which 
corresponds to the third demonstration (3)O , a CRF model 
is trained on the set which consists of the observed 
sequences (1) (2) (4) ( ), , , ... , NO O O O , and the correspond-
ding state sequences (1) (2) (4) ( )

init init init init, , , ... , NS S S S  obtained 
from the initial selection of the candidate key points. The 
set of parameters (3)Λ  estimated during the training phase 
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using (7) and (8), are afterwards employed to infer the 
sequence of states (3)S  which maximizes the conditional 
probability p(S(3) | O(3), Λ(3)). This procedure was repeated 
for each observed sequence from the data set.  

The inference problem of interest here consists of 
finding the most probable sequence of labels for an 
unlabeled observation sequence. The problem is typically 
solved by Viterbi decoding or maximal marginals [1]. 
Here we used the maximal marginals approach, by 
introducing additional state transitions constraints. 
Namely, the state sequences in the presented model are 
defined such that they start with the state 1 and are 
ordered consecutively in a left-right structure, meaning 
that state 1 can either continue with a self-transition or 
transition to state 2. Furthermore, some states might not 
appear in all sequences, e.g., a sequence can transition 
from state 5 directly to 7, without occurrence of state 6. 
By analogy with the right-left Bakis topology in HMMs, 
the contributions from the potential functions which 
correspond to transitions to past states (i.e., 

( ), , 1exp ( , , , )i j i j t tf s s tµ − O  for i j< , { }, 1, si j N∈ ) were 
minimized by setting low values for the parameters ,i jµ , 
making these transitions less likely to occur. Additionally, 
another constraint minimized the possibility of 
transitioning to distant future states, by setting low values 
for the parameters ,i jµ  for 2j i> + . As a result, the 
potential functions for transitioning to more than 2 future 
states had approximately zero values. These constraints 
reflect the sequential ordering of the states in our model. 
Estimation of the label at time t was based on computing 
the maximal marginal probabilities of the graph edges, 
and were solved by the forward-backward algorithm [1] 

( ) ( )1 1 1 1, , ( ) , , , ( )t t t t t t t t tp s s t s F s s t sα β− − − −∝O O  ,    (12) 

where α and β denote the forward and backward variables 
which were calculated in the same recursive manner as 
with HMMs, and the functions Ft in (12) correspond to 
the transition feature functions in (4) [11] 

( ) ( )1 1, , , exp , , ,t t t l l t t
l

F s s t f s s tµ− −
 =  
 
∑O O ,    (13) 

for { }21, sl N∈ .  
The classification rate comparing the initial sequence 

of states ( )
init
nS  and the sequence of states obtained by CRF 

labeling ( )nS  was used as a measure of fit for each 
trajectory n, 

( )( )( ) ( )
, init

1

1 nT
nn n

tt
tn

CR I s s
T =

= =∑ .     (14) 

For each sequence of hidden states, the key points 
were taken to be the transitions between the states. Since 
the recorded demonstrations differ in length, generating a 
generalized trajectory requires applying a technique to 
tackle the temporal variance. For that purpose, 
multidimensional DTW algorithm was employed [26]. 
The observed trajectory corresponding to the states 

sequence with the maximum classification rate was 
selected as a reference sequence refO , against which all 
the other observation sequences were aligned. This 
process resulted in temporally warped sequences of key 
points, with the time stamps corresponding to the time 
vector of the reference sequence. Thus obtained key 
points from all trajectories were interpolated with a 
smoothing cubic spline, yielding a generalized trajectory. 
We introduced weighting coefficients for the importance 
of interpolation of the key points. The weighting 
coefficients were calculated based on the variance of each 
key point relative to the key points from the other 
trajectories with the same time stamps. Hence, the key 
points which pertained to highly variant parts of the 
demonstrations were subjected to greater smoothing. 

5. EXPERIMENTS 
Implementation of the presented concept in robot PbD 
environment was simulated for two types of 
manufacturing processes: painting and shot peening. The 
experimental setup involved capturing of tools’ 
trajectories during the demonstrations by an optical 
marker-based tracker. The tracking system provided the 
tools’ positions and orientations with respect to a global 
frame with a sampling frequency of 100 Hz. The setup 
shown in Fig. 2a was employed to simulate the 
trajectories of the tool for painting the target object. 

For the first experiment, the painting task was 
demonstrated 14 times, and it consisted of first painting 
the contour of the object followed by painting the interior 
part of the panel. The demonstrations are shown in Figs. 
2b and c. The trajectories length Tn ranged from 1393 to 
2073 time frames. For this task, the orientation of the 
painting tool was approximately constant and normal to 
the panel, and therefore it was not considered as a 
relevant discriminative feature. Initially, the trajectories 
were automatically segmented with the LBG algorithm 
using 32 clusters of discrete vectors. A total of 33 
transitions between the LBG’s discrete symbols appeared 
in all trajectories, and these were adopted as the initial 
key points. We also added the first and last measurements 
of each trajectory as key points, resulting in 35 key points 
per trajectory. One sample trajectory with the identified 
key points is shown in Fig. 2b. We used the CrfChain 
toolbox [30] in MATLAB environment to implement our 
approach. The 3D positions and velocities were 
discretized into 32 symbols per sequence, making the 
total number of observation symbols R = 192. The 
percentage of the average classification rates of CRFs for 
different observation features are given in Table 1. The 
best classification rates were obtained when both 
velocities and positions were used as observation features. 
The generalized trajectory is shown with a red line in Fig. 
2c. Note that even if some key points were wrongfully 
classified by the CRF, they would not have big impact on 
the generalization. This is due to the weighting scheme, 
which assigned low weights for fitting to the key points 
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with high variability, relative to the key points from the 
other trajectories.  

The proposed approach was compared to HMM, due 
to its wide usage for labeling and analysis of sequential 
data. To ensure that both methods were compared on an 
equal basis, a discrete multidimensional HMM was 
employed, with the same discrete observation sequences 
and label sequences which were used in the CRF 
approach. The multidimensional HMM reported in [31] 
was implemented. Differently from the one-dimensional 
HMM, the multidimensional HMM has one observation 
matrix for each dimension of the observed data. The 
model is built on an assumption that each dimension of 
the observed sequences is independent from the other 
dimensions. On the other hand, the state transition matrix 
has the same form as in the one-dimensional case. The 
training and inference problems are solved with small 
modifications of the one-dimensional HMM (see [31] for 
details). To maintain consistency with the adopted cross-
validation testing for CRF, the HMM parameters were 
initialized for one of the labeled trajectories (e.g., (3)

initS , 
(3)O ), followed by parameters estimation with the Baum-

Welch algorithm for the rest of the trajectories (e.g., 
(1) (2) (4), , , ... ,O O O ( )NO ). The most probable sequence 

of hidden states for each observation trajectory and the 
given model were obtained by the Viterbi algorithm. This 
procedure was repeated for each of the observed 
trajectories. The mean classification rates from the 
multidimensional HMM are reported in Table 1. For the 3 
cases of considered observation features, HMM had lower 
number of correct labels than CRF. The results are 
consistent with the findings in other studies in the 
literature [10], [11], [19], [22], which report of higher 
classification accuracy of CRF when compared to HMM.  

 
Table 1. Means and standard deviations of the classification 
        rates obtained by CRF and HMM for the painting task. 

 CRF HMM 

1. Position 81.17 (± 9.2) 77.69 (± 1.96)  
2. Velocity 76.86 (± 3.27) 74.75 (± 1.99) 
3. Position, velocity 89.11 (± 3.13) 86.46 (± 1.20) 

 
The second task for evaluation of the proposed 

approach pertained to material peening. Peening is a 
process of impacting material’s surface with small 
spherical elements called shots. This process produces a 
compressive residual stress layer on material’s surface, 
which increases the resistance to cracks caused by 
material fatigue or stress corrosion. Demonstration of the 
peening task was performed 7 times, with the number of 
measurements Tn varying between 2438 and 2655. 
Conversely to the painting experiment, where the 
demonstrations were simulated in the school lab, this 
task’s demonstrations were captured for a real process of 
peening in an industrial environment. The trajectories 
represented waiving motions over a curved surface (Fig. 
3). Tool’s positions, velocities and orientations were 
examined as observation features. The number of clusters 
for initial key points selection with the LBG algorithm 
was set to 4. This choice was appropriate for the simple 
waving pattern of the task. In total 41 key points per 
trajectory were identified, making the number of hidden 
states Ns equal to 40. One sample trajectory with the 
initially selected key points is shown in Fig. 3a. 
Discretization of the trajectories was performed with the 
number of pre-specified clusters for LBG equal to 16, i.e., 
there were 16 discrete observation symbols for each 
dimension of the observed sequences. The classification 
rates of trajectories segmentation with CRF and discrete 
multidimensional HMM are given in Table 2. From the 
provided results it can be concluded that the velocity 
features are the most suitable for CRF segmentation of 
this example. The reason is that the end points in the 
trajectories (see Fig. 3a) correspond to lowest velocities 
of the trajectories, whereas the middle points correspond 
to highest velocities of the trajectories. Hence, these 
features are invariant for the entire set, and are 
informative for classification purposes. With regards to 
the tool’s orientation, only the angles around the axis 

b) a) 

c) 

Fig. 2 a) Experimental setup for the painting experiment 
showing the optical tracker, the tool with attached markers and 
the object for painting. b) One of the demonstrated trajectories 
with the initially selected key points. The arrow indicates the 
direction of tool’s motion. c) Demonstrated trajectories (blue 
            lines) and the generalized trajectory (red line).  
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normal to the surface was taken into consideration, since 
the orientations around the other two axes are almost 
constant and do not convey important information for 
classification purposes. The results indicated that the 
orientation information did not improve the classification 
rate. In addition, CRF classification with the orientation 
as only observation feature failed. The generalized 
trajectory for the case of position and velocity observation 
features is shown in Fig. 3b. (We opted not to show the 
demonstrated trajectories in Fig. 3b, since the demonstra- 
tions were dissimilar, and it would be impossible to 
differentiate between the individual demonstrations). For 
all 4 types of observed features reported in Table 2, HMM 
generated higher errors in predicting the labels for 
observed data. Adding the tools’ orientation degraded 
significantly the HMM performance, whereas for 
positions and velocities features the classification 
accuracy was improved, but lower when compared to the 
CRF success rates.   

6. DISCUSSION 
Implementation of CRF for trajectory generalization in 
robot PbD involves several challenges. 

One is the choice of observed features for 
classification. The other areas of CRF application, such as 
part of speech tagging or image segmentation, usually 
provide a rich set of local features for encapsulating the 
information within the input data. In the case of 
trajectories, the main features one can rely on are the 
positions, orientations and velocities. In [19] CRF was 

implemented for the tagging game with three robots, with 
a goal to label the state of each robot during the tagging 
game. The authors used additional types of features, as 
velocities threshold, the distance between the robots, the 
directions between the robots etc. From the presented 
results in Section 5 one can note that for the peening task 
the velocity features were sufficient for segmentation of 
the trajectories. On the other hand, for the painting task 
the distributions of the velocities were more uniform, and 
thus less useful for segmentation. However, when 
combined with the position features, the velocities 
improved the performance of CRF. To conclude, 
depending on the application, it is necessary to identify all 
relevant features which will contribute towards increased 
classification rate of the algorithm. 

The proposed approach of generalization based on 
key points requires efficient initial identification of 
candidate key points. The employed LBG technique for 
automated detection of the key points entails tuning of the 
number of clusters for trajectories with different levels of 
complexity. One possible alternative to facilitate this 
problem is to take advantage of the expertise of the 
human operator and let him/her select the appropriate 
choice for the number of clusters. This way, it can be 
assured that all the relevant features of the trajectories are 
taken into account. Furthermore, another limitation of the 
proposed approach is its computational expensiveness, 
since the adopted cross-validation imposes the training of 
the model parameters to be performed for each 
demonstration. 

 
Table 2. Means and standard deviations of the classification 
         rates obtained by CRF and HMM for the peening task. 

 CRF HMM 

1. Position 79.06 (± 4.33) 74.99 (± 3.12) 
2. Velocity 94.3 (± 1.79) 80.97 (± 1.79) 
3. Position, velocity 94.7 (± 1.55) 89.98 (± 1.81) 
4. Position, velocity, 
orientation 93.49 (± 4.37) 64.50 (± 42.62) 

7. CONCLUSION 
In this work the discriminative character of CRF has been 
used for trajectory segmentation in a PbD environment. 
CRF was used for probabilistic representation of 
demonstrations, leading to spatio-temporal labeling of the 
observed features across the demonstrated set. An 
interpolation technique was employed to obtain a 
generalized trajectory for reproduction of the 
demonstrated skills. 

The approach was employed to simulate transfer of 
trajectories to a robot for tasks of painting and peening. 
The results showed that CRF was able to correctly 
classify about 90 % of the trajectories points. It was 
concluded that increasing the number of observed features 
usually improves the CRF performance. However, the 
most important aspect is the selection of features which 
convey rich discriminative information for the specific 

b) 

a) 

Fig. 3 a) Plot of a sample trajectory for the peening experiment 
and a set of initially selected key points. b) Generalized 
                    trajectory for the peening experiment. 
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task. The comparisons with HMM indicated on higher 
classification rates of CRF for the considered observation 
features. 
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